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ABSTRACT

The Monte Carlo method simulates a physical system though randomized sampling of the param-
eter space, by scaling by the probability of parameters. Research regrading experimental determina-
tion of the Muon mass was performed by Benjamin Brau of the University of Massachusetts Physics
Department [1]. In their paper, experimental data obtained from a spark chamber was compared
to simulated data from a Monte Carlo simulation. The resulting muon energy was determined to be
100 ± 5 MeV. To improve upon this simulation, our simulation changes some assumptions about the
probability distribution for the angle of the electron’s path from the chamber’s axis. Non−uniform
probability distributions gave the most accurate result when compared to the accepted value for
muon energy, 105.7 MeV. The distribution with the lowest χ2

min that falls within uncertainty of
the accepted energy, is from a positive-linear angle distribution, with the maximum angle as 30o,
yielding the result for the muon mass: 101.9 ± 6.0MeV

c2
.

I. INTRODUCTION

Muons are negatively charged subatomic particles that
form during the collision between cosmic rays and the nu-
clei of atmospheric gases. They are classified as leptons
and are similar to electrons with the key difference being
that the muon mass is significantly larger, with an ac-
cepted mass of 105.7MeV

c2 . This difference causes muons
to be unstable such that the decay of a free muon is al-
most guaranteed to decay into an electron, electron anti-
neutrino, and muon neutrino. This reaction is demon-
strated below:

µ− → e− + νe + νµ (1)

While the muon mass is generally accepted to be ap-
proximately 200 times larger than that of an electron,
measuring it can be difficult. A particular method of
experimentally calculating the mass is utilizing a spark
chamber particle detector and fitting the data taken from
it to a Monte Carlo simulation. In this experiment, we
take the data from a prior group’s and use a Monte Carlo
simulation to deduce our best estimate of the muon mass.

II. BACKGROUND

A. Experimental

The experimental basis for this report utilizes a spark
chamber, which is a particle detector that in this case is
used to detect entering muons. More specifically, we are
taking the experimental data from Brau et al. [1], and
their diagram is depicted in Fig. 1.

Twenty-One circular aluminum plates are layered on
top of one another with a characteristic thickness tg be-
tween them - known as the ’spark gap.’ Every other

plate is charged with some characteristically high volt-
age. When a muon enters the chamber, it leaves a trail
of ionized gas which ’sparks’ due to the high electric volt-
age. The number of sparks produced is the spark number
ns.

The number of spark gaps ns traversed before being
stopped by the chamber’s aluminum plates, quantifies the
energy of the particle resulting from the muon decay. The
charged particle moving within the chamber ionizes noble
gas, leaving a path of ionized atoms between the plates.
A high voltage supply is supplied across the plates, and
the ionized path gives a reduced resistance: this causes
sparks to form along this trajectory. In this experiment,
the angle of the electron’s path from the chamber’s axis
θ was only recorded to θmax ≈ 30o for the creation of
sparks due to a downward directed electron. The result-
ing experimental data had 43 muon decay observations as
summarized by Table I. To deduce the muon mass from
the number of sparks, a Monte Carlo simulation was im-
plemented while varying the energy from 60 MeV to 140
MeV in steps of 5 MeV. The simulation and experimental
data were compared by calculating the sum of squared
residuals at each energy. The minimum of this quantity
occurs at 100 MeV such that the muon mass was found
to be mµ = 100± 5MeV

c2 .

Number of Sparks Number of Muon Decays

3 4 ± 2
4 7 ± 3
5 13 ± 4
6 15 ± 4
7 4 ± 2

TABLE I. The experimental data where Ntot,exp = 43 and
θmax = 30o [1].
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B. Simulated

A Monte Carlo simulation is a simulated model that is
used to find the probability of potential outcomes. In the
context of our experiment, we vary multiple parameters
to simulate a muon entering the spark chamber. Using
these values, we utilize a set of equations that determines
the spark number of each entering muon. This simulation
(which is explained in detail in section III.B) allows us
to compare the different spark number distributions of
various muon masses, thus allowing us to calculate the
likely muon mass measured in the initial experiment [1].

FIG. 1. Apparatus used in experimental trials [1]. Notable
parts of it include the spark chamber itself, and electronics
used to detect muons, and the image acquisition tool to view
images of the muon

III. METHODS

The goal for this experiment is twofold. First, we recre-
ated the simulation referenced in [1] by using the geomet-
rical assumptions and experimental data. Secondly, we
modify the simulation by implementing different proba-
bility distributions for the angle of the electron’s path
from the chamber’s axis and lowering the step size be-
tween energies. This was done in order compute a more
accurate muon mass value, compared to its accepted
value of 105.7MeV

c2 , than the reference measurement of

100 ± 5MeV
c2 . It is important to note that the angle of

the electron’s path from the chamber’s axis had experi-
mental limitations. This is because the Brau group only
recorded incoming angles up to 30o, meaning if there had
been sparks past this maximum, the data did not reflect
such events. This bound was determined because if the
ionized path has too steep, the likely hood of escape be-
fore stopping was greatly increased. This is not to say
that there were no electrons with paths greater than 30o;
these were simply not experimentally viable for counting
the number of sparks produced.

A. Experimental Geometry

FIG. 2. The spark chamber experimental geometry. (a) The
spatial position of the decaying electron with initial kinetic
energy Ee at radial distance r with the polar angle θ and the
azimuthal angle Φ. (b) The spatial position of the decaying
electron inside the chamber is at height z0, and the electron
will traverse the length l, before being stopped by the alu-
minum.

As seen in Figure 2 part (b), the spark chamber’s main
component is a cylinder of 21 stacked aluminium plates
with thickness tp = 0.9525 cm and radius R = 7.62
cm. The plates are separated by spark gaps of thickness
tg = 0.635 cm that are filled with Neon, a noble gas. The
decay is expected to occur at a distance z0, orthogonal
to the surface of the plate, with a path length l (Eq. 3)
until stopped by the aluminum. Sparks will form along
the trajectory, in the gaps between the plates. Corre-
spondingly, the electron will have an escape length lesc
such that if l > lesc (Eq. 4), the electron will escape
the chamber before it is stopped. As seen in Figure 2
part (a), the electron is assumed to be located at a ra-
dial distance r less than the radius of the fiducial volume
Rfid = R

2 from the chamber’s axis. Its initial velocity
will be in the downward direction at the polar angle θ
and azimuthal angle Φ relative to the chamber’s axis.

The electron’s initial kinetic energy in the spark cham-
ber Ee is slowed during its travel through aluminum. Ion-
ization is the dominant energy-loss process for the elec-
tron such that there is a critical energy Ecrit = S0X0

where the energy loss per unit length is S0 = 5.09Mev
cm
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and the radiation length is X0 = 8.9 cm for aluminum.
Thus, electron energies in the experiment do not deviate
greatly from Ecrit = 45 MeV.

Utilizing the geometry of the experiment, the number
of muon decays at different radii is proportional to a ge-
ometric scaling factor of r. Meaning, the probability of
a particular r is proportional to its own length. This can
be visualized as a positive-linear probability distribution.

B. Simulation

For a selected value of mµc
2, the simulation is executed

10,000 times. At each iteration, the quantities z0, r, θ, Φ,
and Ee are randomly chosen from the ranges (0, tp), (0,
R
2 ), (0, θmax), (0, 2π), and (0,

mµc
2

2 ), respectively. The
probability distributions of z0 and Φ are uniform. The
quantity r has a positive-linear distribution and Ee has
a distribution derived in [1] from the Fermi description
of muon decay:

P (Ee) = C(mµc
2Ee)

2(3− 4Ee/mµc
2) (2)

where C is a normalization constant to make the prob-
ability unity. With these random quantities, l and lesc
are computed from:

l = X0 ln

[
1 +

Ee
Ecrit

]
(3)

lesc =
−r cos Φ +

√
r2 cos2 Φ + (R2 − r2)

sin θ

tp
tp + tg

. (4)

If the condition that l > lesc is satisfied, l is set to
equal lesc. Then, the number of sparks is calculated:

ns = 1 + floor

[
l cos θ − z0

tp

]
. (5)

To visualize the results of 10,000 iterations at a partic-
ular mµc

2, a histogram is used with the bins representing
ns and the number of counts representing the number of
muon decays, normalized to the total number of muon
decays Ntot,exp = 43. Varying mµc

2 with stepsize = 0.4
MeV, the χ2 is computed:

χ2 =
∑
ns

[
Nsim(ns)−Nexp(ns)

σexp

]2
(6)

where the uncertainty σexp is the square root of the
experimental counts Nexp(ns) as seen in Table I. The χ2

results are fit to a parabola using ‘numpy.polyfit‘, and
the minimum of the fit represents χ2

min.

C. θ Distributions

There are three θ distribution shapes tested which are
uniform, triangular, and positive linear. The uniform
distribution weighs all possible values of θ with equal
probability, and was executed with θmax at 30o, then at
40o. The triangular distribution has a probability which
increases linearly from θ = 0o to a peak at θ = 30o, then
decreases linearly to zero probability at θ = θmax = 40o.
Lastly, the positive linear distribution has a probability
which increases linearly from zero probability to maxi-
mum probability at θmax, and was executed with θmax
at 30o, then at 40o.

The idea behind these various distributions is that the
reference [1] used a uniform distribution, but it would
make more sense to use a different distribution. This
is because there is more cylindrical volume that allows
for larger angles to have greater probability. Due to the
experimental limitations, θmax was assumed 30o in the
reference [1] simulations. However, it was mentioned in
their conclusions that increasing θmax to 40o produces
results more similar to the accepted muon mass. Along
with this, a probability cutoff at a particular angle does
not physically make sense, but is a consequence of the .
Thus, the triangular distribution was tested because its
probabilities are bound to zero at both ends.

IV. RESULTS

The results of the five tests are summarized in Table
2. The values of mµc

2 which are marked green represent
values that are within the accepted muon mass value of
105.7 MeV

c2 . The values marked red are not within uncer-
tainty of the accepted muon mass.

Trial θ Distribution θmax (o) mµc
2 (MeV) χ2

min

1 Uniform 30 98.3 ± 5.6 0.25
2 Uniform 40 102.7 ± 6.5 1.15
3 Triangular 40 106.1 ± 6.8 0.64
4 Pos-Linear 30 101.9 ± 6.0 0.26
5 Pos-Linear 40 111.2 ± 7.9 1.42

TABLE II. Simulation results for various θ distributions and
choices of θmax.

In minimum chi-square estimation, the best set of pa-
rameters is determined as the parameters which make
the χ2 test statistic as small as possible. Referring to
Table II, there are two θ distributions which produce the
smallest χ2

min values that are comparable to one another.
Trial 1 has a Uniform θ distribution with θmax = 30o,
producing a χ2

min of 0.25. Trial 4 has a positive linear θ
distribution with θmax = 30o, producing a χ2

min of 0.26.
Although both of their χ2

min are small, only the Trial 4
distribution produced a muon mass result that is within
uncertainty of the accepted muon mass. The χ2 and the
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histogram plots of Trial 4 results can be seen in Figures
3 and 4.

FIG. 3. Trial 4 plot of χ2 versus mµc
2. The residuals of the

fit appear randomly distributed such that the quadratic fit is
satisfactory for determination of the muon mass.

FIG. 4. Trial 4 histogram of the number of muon decays
versus the number of sparks at the muon energy of 101.9 MeV,
shown with the experimental data listed in Table I. All of the
bin heights are in agreement with the experimental number of
muon decays, such that taking the muon mass value at χ2

min

is justified.

A. Analysis

The simulation was written in Python using the Spy-
der IDE. After the simulation is run for the input range
of mµc

2 values, χ2 is plotted against mµc
2 with its

quadratic fit and an superimposed plot of the fit residu-
als. From these results, the mµc

2 corresponding to χ2
min

is deduced. The uncertainty is computed as the com-
bined ∆mµc2 from the differences between mµc

2 when

χ2
min is increased by the numeric value of one from the

left (L) and right (R) sides from the mµc
2 at χ2

min. These
differences are ∆mµc2,L and ∆mµc2,R. They are added in
quadrature and the square root is taken to deduce ∆mµc2 ,
as seen in the equation:

∆mµc2 =
√

(∆mµc2,L)2 + (∆mµc2,R)2. (7)

This calculation is allowed assuming that the uncer-
tainty from the left and the uncertainty from the right
are independent of one another and it also allows the
larger uncertainty to be weighted more. Following this,
the simulation is run once more to produce a histogram
of the number of muon decays for the mµc

2 at χ2
min. This

entire process is run a total of five times, each for a dif-
ferent distribution of θ. The reason why the simulation
is run again is for efficiency purposes. Since, to store the
data for the histogram mµc

2 at χ2
min, the data at ev-

ery possible mµc
2 would have needed to be saved prior.

This is allowed because the shape of the histogram does
not visually vary significantly between simulations, due
to the high number of 10,000 iterations.

V. CONCLUSIONS

The aim of this experiment was to compute a more
accurate muon mass value, compared to the accepted
value of 105.7MeV

c2 , than the reference [1] measurement

of 100 ± 5MeV
c2 . When comparing the results of these

simulations to the prior simulation, it is important to
note the difference in the uncertainties. The calculation
for the uncertainties in Table II was described in part D
of section II. Unlike this method, the uncertainty in the
referenced simulation was taken as the step size between
the various tested values of muon mass. Thus, these un-
certainties are computed differently and incomparable in
magnitude.

The results of the simulations fulfilled the aim of the
experiment. This is because four of the five trials fall
within uncertainty of the accepted muon energy. This
is better than the reference [1] result because their mea-
surement of 100 ± 5MeV

c2 did not fall within uncertainty

of the muon mass. Based on the χ2
min results described

in section III, it is possible that the Trial 4 distribution,
which yields a muon mass value of 101.9 ± 6.0MeV

c2 , is
the best model for this simulation. However, it is impor-
tant to note that Trials 2, 3, and 5 also produced more
accurate results and their θ distributions are reasonable
as well. Notably, the base value for the trial 3 result of
106.1± 6.8MeV

c2 is closest to the accepted muon mass.
If this analysis were continued further, it would be

good to compute the mean and standard deviations of
many tests of the five distribution trials, in order to
see what uncertainty is attributable to the 10,000 ran-
dom sets of variables. Also, it would be interesting to
test other θ distributions which are continuous and non-
linear.
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