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ABSTRACT

A study is performed to confirm whether pollen grains exhibit Brownian motion. The analysis
is executed on a video of aspherical shaped pollen grains suspended in a water medium. Positional
measurements were collected using Tracker 5.1.5 and analyzed for grains in spatially different den-
sity regions of the video. The step lengths in both the X and Y coordinates was shown to be
randomly and normally distributed, suggesting the particles exhibited Brownian motion. The mean
square displacement (MSD) and histogram probabilities of step length in both spatial coordinates
were used to compute diffusion constants. It is shown that there exists no spatial correlation in
computed diffusion constant values for different density regions in either method, and that a tempo-
ral correlation exists for the MSD method. By studying particle properties, such as circularity and
area, in relation to the diffusion constants in different density regions, it is shown that the histogram
probability distribution method is the more reliable method when studying Brownian motion.

I. INTRODUCTION

The study of the random motion of small particles in
a medium has been investigated across many years by
multiple scientists. In 1828, botanist Robert Brown was
the first to observe that pollen grains moved randomly
in water, and since then, Brownian motion became the
nomenclature to describe the random behavior of small
particles suspended in a medium. Today, the behavior of
Brownian motion can be observed in biological systems
(diffusion of chemicals within the body), as well as in
weather systems, and even the stock market [1].

Albert Einstein’s discoveries on relativity and light
quanta has overshadowed his PhD dissertation from 1905
on the treatment of fluctuations in motion of suspended
particles. In his study, Einstein argued that the fluc-
tuations in movement were governed by the atoms and
molecules themselves. Specifically, Einstein performed a
statistical analysis on the motion of the particles in which
he calculated the MSD (Mean Square Displacement) of
these particles. He found that the MSD is related to Avo-
gadro’s number and also devised a physical explanation
for Brownian motion, which led to the acceptance of the
kinetic theory of matter [2].

Following Einstein’s discoveries, Jean Perrin performed
a series of experiments during the twentieth century, sim-
ilar to that of Einstein’s, in which he calculated the MSD
of suspended particles. Perrin confirmed Einstein’s ob-
servation and the molecular-kinetic theory of matter [2].

A. Brownian Motion and Kinetic Theory of Matter

The ideal gas law, pV = µRT (where pV is the product
of the pressure and volume of a gas, µ is the moles of a
dilute gas at temperature T , and R is the Ideal Gas con-
stant) can be used to determine the value of Avogadro’s
number, NA. The kinetic theory of gases suggests the
value of R can be written in terms of Boltzmann’s con-

FIG. 1. The random walk of pollen grain particle 50 from this
analysis (procedures discussed at depth below)

.

stant, kB , and NA as R = kBNA [2].
The kinetic molecular theory also states that temper-

ature is a measure of the mean molecular kinetic energy
K = 3

2kBT . However, the only value uniquely defined in
the temperature scale is absolute zero; the temperature
scale itself is arbitrary. Measuring the value of kB inde-
pendently allows for a better method of calculating the
value of NA [2].

Einstein was able to show that a particle exhibiting
Brownian motion in a fluid of viscosity η, temperature T ,
in time t would travel a distance of R(t) =

√
Dt where

D is the diffusion constant. Hence, an observation of a
particle’s trajectory under a microscope would allow for
the measurement of R(t), which, in turn, would allow for
a calculation of kB , thus eventually leading to a value for
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NA. Einstein was able to determine the quantity NA by
observing sugar molecules under a microscope [2].

B. Stoke’s Law

In 1851, G. G. Stokes showed that the frictional coeffi-
cient, Γ, opposing the motion of particles through a fluid
with viscosity η, can be written in terms of the particle
radius a as Γ = 6πηa. Using this value for Γ, and writ-
ing an equation balancing the gravitational force with
the force exerted on a particle from a displaced fluid, the
following relationship can be written [2],

nF

Γ
= −Ddn

dz
(1)

where dn
dz is a z-dependent profile for the concentration

of particles. The osmotic pressure, which is the partial
pressure of Brownian particles, can be written simply as a
function of depth posm(z) = n(z)kBT . The osmotic force
per unit volume is then resolved to fosm = −kBT dn

dz .
Balancing this with the force of gravity per unit volume,
the following equation is devised [2],

n(z)F = n(z)(Mg −W ) = kBT
dn

dz
(2)

Comparing (1) and (2) leads to Einstein’s famous re-
sult for Browninan motion in 1-dimension,

D =
kBT

Γ
=
kBT

6πηa
(3)

This equation allows for the extraction of kB from mea-
surements of diffusion. Details of the exact derivation of
this expression can be found in [2] and [1].

II. PURPOSE

The purpose of this analysis was to determine whether
the motion of pollen grains suspended in a medium can
be characterized by Brownian motion, and whether it can
be described by the interactions detailed in the sections
above. The goal was to also make quantitative measure-
ments of the value of the diffusion constant using different
methods, and to determine whether D depends on den-
sity or other particle properties such circularity or surface
area. A replication of Brownian motion, using the meth-
ods highlighted above, will further confirm that diffusion
can be used to determine important constants in physics
such as kB .

III. METHODS AND PROCEDURES

In this analysis, 28 aspherically shaped pollen grains,
likely observed under a microscope, suspended in a wa-
ter medium were tracked as a function of time in at a

frame rate of 25 fps (frames per second). This video was
found on YouTube and does not provide any informa-
tion about the length scale of the video or what plant
these pollen grains originate from)[3]. Thus, the analysis
uses lengths in units of pixels to represent the data. Us-
ing Tracker 5.1.5, the individual x(t), y(t) positions were
collected for each of the 28 particles in 5 frame intervals.
The choice of picking 5-frame intervals for the position
is discussed at length in Sec. IV.A and IV.F. The units
of time in fps were converted to seconds, and the po-
sitional data for the particles was used to calculate the
diffusion constant in two different ways. These values
were and compared by plotting the probability density
of step lengths taken by the particle in either X or Y
and retrieving the diffusion constant from the standard
deviation of the normally distributed probability density
curve, as well as by employing Einstein’s relationship of
MSD as a function of time. If the probability distribution
plots of step lengths in both directions are normally and
randomly distributed, there would be reason to suggest
the motion of the pollen grains is governed by Brownian
interactions. The values of D individually calculated for
each particle were compared for different particle areas,
and circularity to determine which method of computing
the value D was more reliable. The values of D computed
by both methods were qualitatively compared for differ-
ent density regions of the video to determine whether a
relationship exists between particle density and D.

A. Tracking Particle Positions with Tracker 5.1.5

Tracker 5.1.5, an Open Source Physics (OSP) video
analysis and modeling tool that allows for manual and
automatic tracking of objects, was used in collecting po-
sitional data for this analysis [4]. The auto-tracking fea-
ture on Tracker 5.1.5 allows for the tracking of the X
and Y in pixel positions of each particle at 25 fps for the
duration of the video. Tracker’s auto-tracking feature im-
plements a ’best match score’ process to track particles
in subsequent frames by creating a template image and
searching each frame for the best ’match score’. The best
match score is defined to be the number that is inversely
proportional to the sum of the squares of the RGB differ-
ences between the template and the match pixels. The
template is compared with nearby scores to determine
an interpolated best pixel match position [4]. A target
is placed on the particle prior to tracking. Its cross-hairs
are centered at matches relative to the template. For
this analysis, the targets were placed at the centers of
each particle. The positional X and Y data (measured
with respect to the center of the image on Tracker 5.1.5)
were exported as text files to be used for the rest of the
analysis.
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FIG. 2. Tracker auto-tracking feature dumping particle X, Y
for every time step.

B. Data Collection with ImageJ

Image processing program ImageJ, an Open Source
image processing program designed for scientific multi-
dimensional image analysis [5], was used to number the
particles of the system by first creating a binarized image
of the first frame of the video. ImageJ was also used to
collect other particle structural information such as par-
ticle perimeter and area that were used in the Sec. IV.D
of the analysis to compute circularity.

FIG. 3. ImageJ binary image of first time step with particles
numbered.

C. Probability Density of 1-Dimensional
Displacement

A method for determining the diffusion constant is by
studying the step lengths for many particles in the X and
Y positions [6]. The probability distribution density for
finding 1-D displacement ∆ is,

P (∆) =

√
1

2πσ2
e

−∆2

2σ2 (4)

where the standard deviation of this Gaussian distri-
bution function is σ =

√
2Dt, and t is the time of each

measurement. The diffusion constant D can be deter-
mined by fitting Eq. (4) to a normalized histogram of
the steps lengths of the particles in the X and Y posi-
tions [6].

D. Mean Square Displacement (MSD)

Mean square displacement values were computed sepa-
rately in X and Y pixels for the group of 28 particles and
were plotted as a function of time in seconds. Working
backward from Einstein’s Eq. (3), the diffusion constant
can be rewritten in terms of MSD in X and Y as,

< x2j >= 2Dt =
kBTt

3πaη
(5)

where xj is either X or Y defined for each time interval
t. Here, the left side of Eq. (4) gives the computed
MSD, for the specified direction and time interval. MSD
is represented by the mean of the squared differences in
position between time interval t and t = 0 for N = 28
particles,

< x2jt >=

∑28
p=1(xjtp − xj0p)2

N
(6)

The diffusion constant was also computed for the total
displacement MSD < r2 > versus t where,

< r2t >= 4Dt =

∑28
p=1(xtp − x0p)2 − (ytp − y0p)2

N
(7)

Similar to < x2jt >, < r2t > represents the total MSD
of the group of 28 particles for every 5-frame time step
interval t. The slope of the < r2t > versus t plot allows
for the calculation of the total MSD diffusion constant.

E. Probability of step direction for X-Y
coordinates

A metric to determine whether the pollen grain mo-
tion is reminiscent of a random walk is to verify whether
the step in the positive or negative direction for X-Y co-
ordinates is random. For a particle undergoing random
motion in 1-D, the particle is expected to travel in the
positive direction half of the time, and in the negative
direction half of the time. Meaning, the probability for
a 1-D positional step in the positive or negative direc-
tion is predicted to be 50% at each time step. Thus, the
probability of stepping in the positive or negative direc-
tion is computed as the number of steps in the positive
or negative direction divided by the total steps in the 1D
coordinate. At the time interval of five frames, the mean
of the step direction probability for the particles should
be approximately 50%, for the motion to be considered
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random. This mean is not expected to be exact because
there are only fifty data points, and thus the deviations
in the particle motion are more obvious with this small
sample size per particle.

IV. RESULTS

A. Probability of Step direction Results

The 1-D step direction probabilities for X-Y coordi-
nates were plotted as separate bar charts in Fig. 14 and
Fig. 15, with every individual bar signifying a particle.
The mean probabilities of the bars for both the X and
Y coordinates were within 3% and 2% of the theoreti-
cal probability of 50%. In the X coordinate, 2 of the 28
particles fall outside two standard deviations from the
theoretical probability, and 4 of the 28 particles fall out-
side this condition in the Y coordinate.

The result of increasing the number of frames per in-
terval is that the mean step probability for each direction
+X, -X, +Y, -Y deviates further from the theoretical ex-
pectation (Fig. 16). For example, the mean probability
in the -Y direction is approximately 51% at 2 frames per
interval, then increases to 56% at 19 frames per interval.
Thus, as the number of frames per interval increases,
the probability of stepping in the positive or negative di-
rection deviates from theoretical, and the particle will
appear to have a biased movement in either the posi-
tive or negative direction. Thus the choice of 5 frames
per interval is justified, since this selection is close to the
theoretical expectation.

B. Diffusion Constant Computed with
1-Dimensional Displacement Probability

Distribution

The steps lengths for X and Y , computed for each
particle, by taking the difference in particle positions for
every 5 frames. The step lengths for all 28 particles were
plotted separately as histograms by their 1D direction in
Fig. 4 and Fig. 5. These distributions were shown to
be randomly and normally distributed. Due to this, the
histogram data were fitted to functions of the form Eq.
(4), and the diffusion constant was extracted from the
standard deviation of the fits.

The standard deviation for the histogram of X-step
lengths and corresponding diffusion constant were found
to be σ=1.975, D=9.8±1 [px2s−1]. The standard devi-
ation of the Y -step lengths and corresponding diffusion
constant were found to be σ=1.888, D=8.9±1 [px2s−1].
The uncertainty calculations on the measurements of D
with this method are discussed in Sec.V.

FIG. 4. Probability density of step length in X-direction.

FIG. 5. Probability density of step length in Y-direction.

C. Diffusion Constant Computed with MSD

The diffusion constant can be extracted from the slopes
of the MSD versus time plots. The individual MSD plots
and linear fits are shown on Fig. 6 and Fig. 7, along with
their linear fitting parameters and uncertainties. Here,
the MSD values are plotted for 5-frame intervals.

The diffusion constant from the linear fit for < x2 >
versus t is found to be D = 10.1±0.6 [px2s−1], while the
diffusion constant from the < y2 > versus t fit is found to
be D=12.1±0.4 [px2s−1]. The chi-square value and re-
duced chi-square values for both the < x2 > and < y2 >

fits are found to be, χ2 = 219.4, χ̃2=4.6, and χ2=101.8,

χ̃2=2.1. These values suggest the linear fits are good
for most of the data points in Fig. 6 and Fig. 7. The
p-values of approximately zero for both fits, suggesting
the null hypothesis can be rejected because it is less than
the significance level of α = 0.05. The null hypothe-
sis rejection means it is statistically significant that the
slope is nonzero. The r-values of 0.95 and 0.97 similarly
suggests an almost perfect positive linear relationship be-
tween < x2 > and t, and < y2 > and t.

The comparatively large errorbars on the data during
the later times on both Fig. 6 and Fig. 7 are due to the
wider distribution of the positions of the 28 particles in
total over time. This effect on the increase in error of
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FIG. 6. MSD < x2 > versus Time Linear-Fit. The following
parameters were computed for the fit: χ2=219.4, χ̃2=4.6, p-
value=0.0, r-value=0.93

FIG. 7. MSD < y2 > versus Time Linear-Fit. The following
parameters were computed for the fit: χ2=101.8, χ̃2=2.1, p-
value=0.0, r-value=0.97

MSD calculations over time is not evident in the method
outlined in Sec. III.C and is one reason to suggest that
the method outlined in Sec. III.C may pose as a better
alternative to calculating values of the diffusion constant
for the system. Another reason to suggest the histogram
method as the better alternative is the over weighting
affect that the initial data points have on the MSD cal-
culations for the particles at later times. Since, the values

for the MSD are calculated by first subtracting the initial
x0 and y0 positions for each particle from their positions
at time t, such that the earlier points of the data are
more heavily weighted.

FIG. 8. MSD < r2 > versus Time Linear-Fit. The following
parameters were computed for the fit: χ2=528.9, χ̃2=11.0,
p-value=0.0, r-value=0.97

The diffusion constant from the linear fit for < r2 >
versus t is found to be D = 11.1±0.4 [px2s−1]. The
chi-square and reduced chi-square values are χ2=528.9,

χ̃2=11.0 and signifies that the linear fit does not fully rep-
resent the data. However, the p-value of approximately
0.0 and r-value of 0.97 suggests that the null-hypothesis
can be rejected and that there is an almost perfect posi-
tive linear relationship between < r2 > and t. There are
once again larger error bars on the data in Fig. 8 due to
the wider distribution of the total 28 particles over time.

An unusual observation to note is the larger χ̃2 value
for the < r2 > fit in Fig. 8 compared to that of the
< x2 > and < y2 > fits in Fig.6 and Fig.7. Reinspecting
the data from Fig. 6 and Fig. 7 shows that there is
a substantial deviation that appears around t=1.89 in
both plots. This is unusual given that calculations of
< x2 > and < y2 > are expected to be uncorrelated.
This suggests a possibility of an external force acting on
the system at around t=1.89.

D. Diffusion Constant versus Particle Area and
Circularity for Both Methods

When plotting the diffusion constant versus particle
area or circularity, it is expected that larger particles
will have a larger drag force according to Stoke’s Law,
such that the diffusion relies on the size and shape of the
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molecule. First, the relationship between D and particle
area is considered. The histogram method Fig. 19 pro-
duced a moderate negative linear relationship for both X
and Y with a slope of -0.013 s−1 and -0.012 s−1, respec-
tively. The p-values of both linear models are smaller
than the 0.05 threshold, signifying the hypothesis of a
nonzero slope is supported. Thus, this relationship is
statistically significant. On the other hand, the MSD
method Fig. 17 produced fits with p-values larger than
the threshold, signifying that the hypothesis of zero slope
cannot be rejected. Now, the relationship between D and
particle circularity is considered. These particles have a
low aspect ratio with circularity within (0.75, 1). In Eq.
3, the diffusion is inversely proportional to the frictional
coefficient for the spherical geometry. When comparing
this coefficient between a sphere and an ellipsoid, the
ellipsoidal geometry should produce a larger coefficient,
and, in turn, produce a smaller diffusion coefficient. The
histogram method Fig. 20 produced a moderate positive
linear relationship for both X and Y with a slope of 46.81
px2s−1 and 46.71 px2s−1, respectively. The p-values of
both linear models are smaller than the 0.05 threshold,
signifying the hypothesis of a nonzero slope is supported,
meaning, the relationship is statistically significant. In
contrast, the MSD method Fig. 18 produced fits with p-
values larger than the threshold, such that the hypothesis
of zero slope cannot be rejected.

E. Comparison of Individual Diffusion Constants
for Different Regions and Different Methods

The individual D values computed for each particle
from both methods highlighted in Sec. III.C and III.D
were compared qualitatively at different density regions
of the video. The segments of the video were divided as
follows Fig. 9:

• Brown - Particle not surrounded on all sides by
other particles.

• Grey - Particle constrained on all sides by other
particles.

• White - Particle constrained on some sides by other
particles.

• Blue - Particle constrained on only one side by an-
other particle.

Based on these classifications, the values of the indi-
vidual diffusion constants were plotted as histograms for
the different methods in Fig. 10 and Fig. 11.

It can be inferred, by comparing the individual diffu-
sion constants plotted in the histograms for both meth-
ods, that there does not exist a relationship between the
values of D and the particle region density. The values
of D fall in such a wide range of values (i.e. the grey re-
gion for both methods shows the D value range between
approximately 2 to 33 px2s−1) such that it is difficult to

FIG. 9. Different density regions distinguished by colors.

FIG. 10. Comparison of D constants using the X-direction
step distribution.

suggest density has an effect on diffusion. The same col-
ored peaks on the histograms would have been closer to
one another in range, had the density affected the value
of D measured from both methods.

F. Diffusion Constants Versus Time

The diffusion constant was computed for all 28 parti-
cles in the system at different time steps, signifying the
choice of the number of frames per interval. This was
done separately for both the Probability Density of 1-
Dimensional displacement method and the MSD method.
These values of D were then plotted against the number
of time steps.

Fig. 12 reveals that the values of D from the prob-
ability density method are smallest for the lowest time
interval and increase until approximately the time step
of 12 frames, before leveling off to approximately a sin-
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FIG. 11. Comparison of D constants using the X-direction
MSD fits.

FIG. 12. One-dimensional diffusion constants in the Y coor-
dinate computed from the probability density method, with
use of all 28 particles, plotted against the number of frames
per interval.

gular value. On the other hand, Fig. 13 reveals that
the values of D begin at a stable value of approximately
10 px2s−1. This value of D begins to randomly devi-
ate at about 8 frames per second, with the magnitude of
deviations increasing with the number of time steps.

The choice of five frames per interval is justified based
on the results of these plots for two reasons. First, both of
the relationships produce a diffusion constant of approx-
imately 10 at 5 frames per interval which makes the con-
stants comparable in magnitude between the two meth-
ods. The second justification is that there is minimal
temporal correlation with D at the smaller number of
frames per interval with the MSD method.

FIG. 13. One-dimensional diffusion constants in the Y coordi-
nate computed from the Mean Square Distance method, with
use of all 28 particles, plotted against the number of frames
per interval.

V. UNCERTAINTIES

The uncertainty in the measurements presented in this
analysis assesses Tracker’s ability to accurately track the
trajectory of the 28 particles in the system. Particle 11
was tracked five different times in order to calculate an
error in the auto-tracker’s ability to measure the X and
Y positions in pixels for every time step. For each trial,
the Tracker marker was placed at the presumed center
of the particle and the auto-tracking feature was allowed
to generate X and Y data for particle 11. The stan-
dard deviation of the position data at every time step
was computed for the five trials, and this uncertainty
at every time step was propagated using single-variable
error propagation to find the uncertainties on the diffu-
sion constants, D, computed for the two methods. Two
variable error propagation was used in order to compute
errors for < r2 > measurements. These uncertainties on
< r2 > were then propagated again with single variable
error propagation to determine the error on the diffusion
constants for the < r2 > fits. On average, Tracker mea-
sured X and Y positions with an uncertainty of ±0.65
px. The uncertainty on the diffusion constants computed
with the probability density histogram method was ap-
proximately ±1 [px2s−1], and with the MSD methods it
was (±0.6, ±0.4, ±0.4) [px2s−1] for the diffusion con-
stants computed with < x2 >, < y2 > and < r2 >. The
uncertainty on the MSD calculation itself for each time
step ranged between ±0.1 and ±20 [px2] for < x2 >,
< y2 > and < r2 >.

As mentioned earlier in Sec. IV.C, there are large error
bars during later times for data in Fig. 6, Fig. 7 and Fig.
8. This is due to the wider distribution of positions of
the particles for the total 28 particle system over time.
Similarly, there is an over weighting effect in the MSD
calculations from the first data points for all < x2 >,
< y2 > and < r2 > data. All MSD values are calculated
with respect to the initial position of the particles. This
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results in an unavoidable bias for the particle to move in
a certain direction for this method of computing D.

VI. CONCLUSIONS

The step length distribution for both X-Y directions in
Fig. 4 and Fig. 5 are shown to be both randomly and nor-
mally distributed, as expected for pollen grain particles
exhibiting Brownian motion. For a 5-frame time interval,
the probability of stepping in either ±x or ±y is approxi-
mately equal for all directions and all particles. From the
comparison of D values in the different particle density
regions of the video, there appears to be a zero spatial
dependence relation (as evident in the histograms in Fig.
10 and Fig. 11), signifying particle density does not influ-
ence the effect of diffusion. However, a possible temporal
correlation may exist for the MSD method for comput-
ing D since there exists an over-weighting effect on the
initial data points for MSD calculations for the particles.
If the initial positions of the particles change, so will the
MSD calculations for those particles. Similarly, as the
length of the stepping time intervals change, the step
length histograms will deviate from Gaussian due to the
decrease in the total number of data points analyzed. In
other words, the normal fit of the probability distribution
function for step-lengths will be less accurate. Similarly,
Stoke’s theorem assumes the particles to be spherical.

Due to this fact, it is expected that a relationship exists
between the computed D values and individual particle
properties. From Sec. IV.D, it was shown that there
exists no relationship between the MSD method D con-
stants and particle areas or circularities. In contrast, for
the step-length histogram method, there appears to be
a relationship between D constants and particle area or
circularity. Based on these observations, it can be con-
cluded that the step-length distribution method is a more
reliable model in studying diffusion of pollen grains in a
fluid.

For future work, it would be beneficial to compute a
theoretical value of the diffusion constant for this partic-
ular system in order to make comparisons to the experi-
mental data. It would also be useful to also make com-
parisons with the experimental results from other similar
studies as well as to further study the effect of tempo-
ral correlation. This would be helpful for understanding
the differences in D values computed for both MSD and
step-length distribution methods.
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VII. ADDITIONAL FIGURES
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FIG. 14. X-Direction Step=5 Probabilities for all 28 Particles.

FIG. 15. Y-Direction Step=5 Probabilities for all 28 Particles.
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FIG. 16. Mean Step Displacement Probability versus Frames per Interval.

FIG. 17. MSD Method; Diffusion Constant versus Particle Area.
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FIG. 18. MSD Method; Diffusion Constant versus Particle Circularity.

FIG. 19. Probability Step Distribution Histogram Method; Diffusion Constant versus Particle Area.
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FIG. 20. Probability Step Distribution Histogram Method; Diffusion Constant versus Particle Circularity.


