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Abstract:    The   goal   of   our   experiment   was   to   observe   quantized   conductance     
by   placing   two   gold   wires   in   a   circuit   with   an   applied   voltage.   Data   is   collected     
as   voltage   traces   versus   time   on   an   oscilloscope   to   measure   the   conductance     
response   as   integer   multiples   of   .   We   observed   the   conductance   integer   e h  2 2/   
multiples   as   step   sizes   represented   by   peaks   on   histograms   of   voltage   data.   Our     
measured   step   sizes   compared   with   the   theoretical   values   of   step   sizes   gave     
a   lower   percent   error   for   lower   integer   multiples   of   the   conductance.   Solving     
for   the   conductance   of   all   voltage   data,   we   found   our   measured   quantum     
conductance, ,   to   be   within   uncertainty   to   the   .72 0 .08 0G0 = 7 * 1 5− ± 0 * 1 5−   
theoretical   value,   .   .75 0G = 7 * 1 5−   

  
Background   

  
Nanostructures  demonstrate  quantum     
mechanics  in  their  electrical,  mechanical,       
and  optical  properties.  These  properties,  not        
found  in  larger  devices,  can  be  used  as  the           
bases  for  future  technologies.  A  simple        
apparatus  can  be  created  to  model        
nanostructure  physics  to  explore  its  effects        
[2].  One  important  effect  is  the  quantization         
of   electrical   conductance.   
The  effect  of  quantized  conductance  was        
first  discovered  by  the  Dutch  group  at  the          
same  time  experimenters  at  Cambridge       
University  were  observing  the  phenomena.       
The  groups  were  both  studying  point-contact        
spectroscopy  with  different  motivations.      
Point-contact  spectroscopy  is  important  for       
the  study  of  electrons  scattering  in  a  solid          
object   [1] .   As  the  two  points  touched,  the          
contact  suggested  quantization  of      

conductance  as  it  demonstrated  a  step-like        
behavior  when  provided  with  a  negative        
voltage.  This  discovery  is  similar  to  the         
quantum  Hall  effect.  In  this  effect,  an         
electron  gas  in  the  presence  of  a  magnetic          
field  also  shows  a  stepping  pattern  at         
different  multiples  of   for  a  decreasing     h  e2/     
magnetic  field.  Experimenters  attempted  to       
answer  the  question  as  to  why  the         
conductance  changes  in  integral  multiples  as        
two  electron  reservoirs  are  connected.  They        
found  that  the  point-contacts  act  as  a         
waveguide  for  the  electrons.  When  the       
contact  is  varied,  the  allowed  number  of         
modes  that  can  move  into  the  waveguide         
will  jump  in  steps  discontinuously  [2]. For        
each  allowed  mode  there  is  a  conductance  of          
integer  multiples  of  ,  which  can  be     e h  2 2/     
derived.     
  

Derivation   

https://www.zotero.org/google-docs/?3aXaeu
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The   current   of   a   wire,   ,   of   length     is  I L  
determined   by   the   number   and   velocity   N v
of   electrons   with   charge   ,   as   follows:  e  

                        (1)   veN L  I =  /  
The   conductance   of   a   wire,   ,   is   the   current  G  
divided   by   the   supplied   voltage:     

                           (2)   I V  G =  /  
Thus,   the   conductance   can   be   re-written   in   
terms   of   Eq.1,   

                     (3)  eN LV  G = v /  
A   single   electron   travelling   from   one   end   of   
the   wire   to   another   will   undergo   a   drop   in   
potential   energy,   ,   given   by:  EΔ  

                           (4)  E VΔ = e  
Due   to   this,   the   voltage   used   to   compute   the   
conductance   is   replaced   by   the   relationship   
in   Eq.4   to   produce   

               (5)   ve N LΔE  G =  2 /  
To   further   resolve   Eq.5,   the   number     of  N  
electrons   travelling   through   a   wire   of   length   

,   contributing   to   the   conduction,   as   well   as  L  
the   difference   in   potential   energy     across  EΔ  
the   ends   of   the   wire   must   be   determined.   
First,   the   change   in   energy     is   given   by  EΔ  
the   difference   in   Fermi   energies   between   the   
terminals,   which   causes   current   to   flow.   
Therefore,   the   Pauli   exclusion   principle   can   
be   invoked,   which   postulates   that   the   Fermi   
energies   can   each   occupy   two   electrons   per   
state.   As   a   result,   the   number   of   electrons   N
is   twice   the   number   of   quantum   states   within   

.   EΔ   
The   number   of   quantum   states   for   this   range   
of   energies   is   derived   using   the   quantum   
mechanics   for   a   particle   in   a   box   of   length   

  with   electron   velocities   in   a   range   .  L vΔ  
Utilizing   the   de   Broglie   wavelength   of   an   
electron   

                            (6)  n  λn = L/  
which   takes   on   discrete   values   at   the   
integers    such   that   the   velocity  , , , ..n = 1 2 3 .  
of   electrons,   with   effective   mass   ,  m  

                            (7)  λm  v = h/  
has   discrete   states:   

                       (8)  h Lm  vn = n /  
For   a   velocity   range   ,   Eq.8   is   used   to  vΔ  
compute   the   number   of   quantum   states,     

                        (9)  mΔv h  n = L /  
Recalling   the   relationship   of   this   quantity   
with   the   number   of   electrons   ,   Eq.   9   is  N  
resolved   to:   

 2LmΔv h.  N =  /        (10)   
By   considering   the   kinetic   energy   of   an   
electron   

 mv 2  E =  2 /        (11)   
It   is   deduced   that   for   a   range   of   velocities,   

E vΔv.Δ = m       (12)   
Substituting   Eq.   12   and   the   number   of   
electrons   contributing   to   conduction   

                  (13)  LΔE vh  N = 2 /  
with   Eq.   5,   the   result   is   the   quantum   
conductance   

                         (14)  e hG = 2 2  
which   occurs   at   integer   multiples.   
  

Theory   
The   Quantum   Hall   Effect   began   the   study   of   
electron   transport   through   conductors   that   
revealed   different   integral   factors   and   
stepping   behaviors.   This   effect   is   explored   
through   mesoscopic   systems.     
Mesoscopic   systems   are   systems   
intermediate   in   size,   on   a   log   scale,   and   are   
between   microscopic   and   macroscopic.   The   
primary   feature   of   this   type   of   system   is   its   
quantum   wave   nature   of   electrons.   These  
systems   work   together   with   experimental   



techniques   to   reveal   important   electron   
transport   features.   Such   as,   its   
semiconducting   materials   are   significant   for   
showing   quantum   effects   [4].   Even   with   
those   of   differing   material   and   size,   or   
submergence   in   various   fluids.   Quantization   
is   a   universal   property   of   any   metallic   
contact.     
An   example   of   a   mesoscopic   system   is   
quantized   conductance.   Quantized   
conductance   is   a   measure   of   electricity   flow   
which   involves   nanosized   contact.   The   
contact   is   on   the   scale   of   a   few   to   a   hundred   
atoms.   When   a   constant   voltage   is   applied   to   
two   gold   wires,   electricity   flows   as   they   
vibrate   coming   in   and   out   of   touch   with   one   
another.   This   vibrational   contact   acts   as   a   
waveguide   for   electrons;   an   integer   number   
of   modes   that   are   above   cutoff   will   
propagate   in   the   waveguide   [2].   The   value   
for   the   number   of   modes   allowed   will   
change   depending   on   the   contact.   The   value   
will   jump   from   one   integer   value   to   the   next   
reminiscent   of   quantization.     
Quantized   conductance   signifies   that   there   
will   only   be   a   finite   number   of   occupied   
modes   for   the   wave.   As   the   size   of   the   
contact   is   changed,   the   number   of   modes   
that   are   allowed   jumps   discontinuously.   
And,   for   each   mode,   the   nanoscale   contact   
has   the   conductance   derived   from   Eq.14, 

,   where,   ,   is   electron   charge  e h  G = 2 2/ e  
and,   ,   is   planck’s   constant.  h  
In   this   experiment,   two   gold   wires   were   
vibrated   for   an   applied   voltage   as   the   current   
decay   is   measured.   The   plot   of   this   is   known   
to   show   the   discontinuous   step   pattern   over   
time   as   quantized   conductance   is   observed.     

  

Apparatus:   Scope   
  

After  examining  various  research  studies  as        
background,  we  decided  to  replicate  the        
circuit   depicted   in   Fig.   1   below   [2].     

  
Fig.  1:  Experimental  setup  that  we  modeled  on  our           
breadboard.     
  

We  considered  the  “right  side”  of  this         
experiment  to  be  the  op-amp  setup  and         
everything  to  the  right  of  it.  The  “left  side”,           
accordingly,  refers  to  the  gold  wires  and  the          
resistor  setup  to  the  left  of  them.  The  right           
side  of  the  apparatus  begins  with  the         
oscilloscope  connection  into  the  computer,       
which  is  running  the  computational  analysis        
tool  called  Waveforms,  and  the  oscilloscope        
is  grounded.  Next,  the  op-amp,  which  refers         
to  an  Operational  Amplifier,  is  connected  in         
series  with  a  100k  kOhm  resistor  connected         
in  parallel  around  the  op-amp.  The  op-amp        
has  8  pin  connection  points,  which  can  be          
more  clearly  seen  in  Fig.  2  below.  The          
circuit  is  connected  to  the  second  (“inverting         
input”)  pin,  the  third  (“non  inverting  input”)         
pin  is  grounded,  the  fourth  (“negative        
voltage”)  pin  is  given  a  voltage  supply  of  -9           
V,  the  sixth  (“output”)  pin  is  connected  to          
the  circuit,  and  lastly  the  seventh  (“positive         
voltage”)  pin  is  given  a  voltage  supply  of  9           
V.     



  
Fig.   2:   Op-amp   used   on   the   right   side   of   the   circuit    [3].   

  
The  op-amp  provides  a  way  for  voltage  gain          
over  the  circuit,  resulting  in  the  output         
voltage  being  much  higher  than  the  input         
voltage  when  fed  through  the  op-amp.  This         
voltage  amplification  is  possible  by  using        
the  op-amp  with  feedback,  which  we  do  by          
connecting  the  resistor  across  the  op-amp        
and  into  the  inverting  input  and  the  output          
pins.  The  purpose  of  using  this  voltage         
amplifying  device  is  to  emphasize  the        
otherwise  extremely  small  voltage      
differences  that  arise  from  this  experiment.        
The  weak  electric  signal  from  the  brief         
moments  of  quantized  conductance  of  the       
gold  wires  would  be  very  hard  to  detect          
alone,   so   we   amplify   the   response.   
  

The  left  side  of  the  circuit  consists  of  the           
gold  wires,  set  up  so  that  they  may  vibrate           
between  touching  and  not  touching  when  the        
table  is  shaken,  and  the  combination  of         
resistors.  The  47  Ohm  and  3.9  kOhm         
resistors  are  connected  in  parallel,  followed        
by  a  10  kOhm  10-turn  resistor.  The  47  Ohm           
and  10  kOhm  resistors  are  grounded.  Lastly,         
a  negative  voltage  supply  is  connected  to  the          
10  kOhm  10-turn  resistor  at  the  very  end  of           
the   circuit.   

  
Apparatus:   Application   

  
Using  the  circuit  kits  provided  to  us  by  the           
Physics  department,  we  built  the  previously        
described  circuit  using  a  breadboard,       
resistors,  an  op-amp,  batteries,  an       
oscilloscope,  gold  wires,  and  connection       
wires.  The  gold  wires  and  oscilloscope  can         
be   seen   in   Figs.   3   and   4,   respectively.   
  

  
Fig   3:   Gold   wires   used   in   the   circuit.     
  

  
Fig.   4:   Analog   Discovery   2   oscilloscope.     

  
The  right  side  of  our  circuit  followed  the          
previously  described  circuit  almost  exactly,       
and  we  used  two  batteries  to  supply  the  -9  V            
and  9  V  to  the  op-amp  pins,  which  can  be            
seen  in  Fig.  1.  Each  battery  was  connected          
with  one  side  to  the  op-amp,  and  the  other           



side  grounded.  We  used  the  Waveforms        
analysis  software  as  the  oscilloscope  screen,        
where  we  could  view  the  voltage        
relationship  after  causing  the  gold  wires  to         
shake,  and  change  different  viewing       
settings.  The  software  also  allowed  us  to         
apply  a  negative  input  supply  voltage,  which         
can  be  seen  with  the  white  wire  labeled  “-V”           
in   Fig.   5.   
  

  
Fig.  5:  The  breadboard  circuit  made  to  model  the           
experimental   setup.     

  
For  the  left  side  of  the  circuit,  we  altered  the            
resistors  a  bit  due  to  the  supply  that  we  had            
in  order  to  achieve  a  similar  small  appliance          
of  resistance.  The  resistors  used  are  5.1k         
Ohms,   1k   Ohms,   and   39   Ohms.     
  

Procedure     
  

Our  first  step  was  to  test  the  workings  of  our            
circuit.  We  started  with  the  right  side  of  the           
circuit,  and  set  up  the  op-amp  system  with          
the  100k  Ohm  resistor  and  oscilloscope        
connection  into  our  computers.  We  tested        
this  by  then  applying  some  voltage  to  the  op           
amp  and  manually  testing  the  resistor  with  a         
multimeter  to  estimate  the  response  that  we         
should  get.  We  then  added  the  gold  wires  to           

the  circuit,  and  made  sure  that  we  had  a           
voltage  output  of  about  9  V  on  the          
oscilloscope  when  they  were  fully  touching,        
and  an  output  at  0  V  when  they  were  not            
touching.  We  then  applied  the  rest  of  the  left           
side  of  the  circuit,  including  the  resistors.         
Next,  we  took  multiple  runs  for  various         
different  input  voltages.  For  each  run,  we         
lightly  hit  the  table  that  the  breadboard         
circuit  was  on  in  order  to  shake  the  gold           
wires  as  Waveforms  was  running.  We        
observed  and  saved  the  stepping  relationship        
of  quantized  conductance  between  the  gold        
wires  as  they  went  in  and  out  of  connection.           
The  stepping  relationship  of  conductance  is        
observed  as  the  step  in  voltage  on  the          
oscilloscope.  We  took  five  of  these  runs  for          
five  different  input  voltages:  -2.25  V,  -2.50         
V,  -2.75  V,  -3.00  V,  and  -3.25  V.  From  there,            
we  then  randomly  chose  3  of  those  runs          
from  each  input  voltage,  resulting  in  a  total          
of   15   runs   to   analyze.     
  

After  collecting  this  data,  we  then  analyzed         
it  by  creating  histograms  for  each  input         
voltage  in  order  to  observe  the  peaks  due  to           
the  stepping  relationship.  We  then  divided        
out  the  factor  of  input  voltage  in  order  to  get            
a  master  histogram  from  all  15  runs,  which          
will  be  detailed  further  in  the  Analysis         
section.  Lastly,  we  calculated  what  our        
expected  step  voltage  locations  would  be        
based  off  of  the  gold  wire  conductance,  and          
compared  them  to  our  observed       
experimental   step   locations.   
  

Data   
  



The   data   was   taken   on   Waveforms   
Oscilloscope   using   the   same   circuit   set   up   
with   different   applied   voltages   to   observe   
conductance   responses.   We   collected   
numerical   data   for   voltage   and   time   and  
visually   observed   conductance   steps.   The   
theoretical   step   size   voltage   was   calculated   
using:   
                     (15)   V G 100k Ω into wire *  *   
The   values   for   the   first   step   size   of   each  
input   voltage   is   shown   in   Fig.   6   below.   To   
obtain   higher   values,   you   use   integer   
multiples   of   the   conductance   n=1,2,3.     

  
Fig  6:  Five  input  voltages  were  applied  to  the  system  on             
Waveforms.  For  each  system  the  voltage  into  the  gold  wire            
was   measured   with   a   multimeter   at   the   39   Ohm   resistor.     
  

The   applied   voltages   and   their   
corresponding   oscilloscope   are   shown   below   
in   Fig.   7(a)-(e).   Labelled   are   the   theoretical   
step   sizes   where   the   measured   step   size   
occurred.   The   data   from   the   voltages   of   the   
oscilloscope   was   made   into   a   corresponding   
histogram   below   each   oscilloscope   trace.     
  

  

  
Fig.  7:  Data  from  the  oscilloscope  trace  and  values  in  a             
histogram.     
(a)  -2.25V  input  on  the  Waveforms  oscilloscope.  The          
theoretical  step-sizes  are  labelled  for  each  step  on  the  trace            
with   its   histogram   representation.   (Above)   

  

  
(b)  -2.50V  input  on  the  Waveforms  oscilloscope.  The          
theoretical  step-sizes  are  labelled  for  each  step  on  the  trace            
with   its   histogram   representation.   (Above)   

  

  



(c)  -2.75V  input  on  the  Waveforms  oscilloscope.  The          
theoretical  step-sizes  are  labelled  for  each  step  on  the  trace            
with   its   histogram   representation.    (Above)   

  

  
(d)  -3.00V  input  on  the  Waveforms  oscilloscope.  The          
theoretical  step-sizes  are  labelled  for  each  step  on  the  trace            
with   its   histogram   representation.    (Above)   

  

  
(e)  -3.25V  input  on  the  Waveforms  oscilloscope.  The          
theoretical  step-sizes  are  labelled  for  each  step  on  the  trace            
with   its   histogram   representation.    (Above)   

  
Uncertainties   

  
A  few  uncertainties  arose  from  this        
experiment.  Firstly,  as  with  any  electrical        
signal,  there  was  experimental  noise.  This        

can  be  seen  in  Fig.  8,  where  the  signal           
oscillates  at  zero  on  the  oscilloscope  trace.         

  
Fig.  8  :  -3.25V  input  oscilloscope  trace  oscillating  around           
0V.     
  

This  resulted  in  a  few  bins  around  zero  in           
the  histograms  to  be  filled,  rather  than  right          
at  zero.  Some  steps  were  also  not  as  clear  as            
others,  as  pointed  out  in  Fig.  9  below,  and           
these  made  the  steps  harder  to  identify         
because  they  didn’t  show  up  very  well  in  the           
histograms.   
  

  
Fig.  9:  -3.00  V  input  oscilloscope  trace  with  not  sharp  steps             
above   n=1.     

  
Additionally,  there  was  error  on  the        
multimeter  measurements  of  voltage  and       
resistance.  There  were  also  a  few  “bad         
runs”,  one  of  which  is  highlighted  in  Fig.  10           
below.  These  runs  created  inaccuracies  in        
the  histograms,  resulting  in  extra  counts  at         
various  locations.  These  errors  happened       
from  various  circuit  malfunctions  like  loose        
wires.   



  
Fig.  10:  -3.25  V  input  oscilloscope  trace  demonstrating  a           
poor   run.     

  
Further  error  resulted  from  analysis       
calculations,  including  the  calculated      
theoretical  step  size  in  Eq.  15.  We  needed  to           
measure  the  voltage  into  the  gold  wire  using          
a  multimeter  to  find  this  step  size.  This          
value  fluctuated  for  each  reading,    .1V± 0    
accordingly  this  is  the  uncertainty  for  each         
voltage  reading  into  the  gold  wire.  The         
uncertainty  on  the  resistor  was  found  by         
performing  a  multimeter  measurement  of       
resistance.  This  measured  value  was       
compared  to  the  actual  value  found  using  the          
color  code  on  the  resistor.  The  color  code          
showed  the  resistor  to  be  to  100K ,  but  our        Ω    
reading  came  out  to  be  99K  giving  us  an       Ω     
error  of  1K .  Performing  the  calculation    ± Ω     
with  these  uncertainties  we  used  error        
propagation  for  uncertainty  on  the       
theoretical   step   size   shown   in   Fig.   11   below:     

                 s
Δs = √( ) )V

ΔV 2 + ( R
ΔR 2  

Fig.   11:   Table   of   data   and   calculations   for   our   theoretical   
step   size   with   uncertainty.   Theoretical   step   sizes   are   shown   
compared   to   our   measured   step   sizes   marked   on   the   
oscilloscopes   and   histograms   in   the   data   above.     
  

Our   measured   step   size   is   found   from   the   
peaks   of   our   histograms   for   each   applied   
voltage   run.   The   peaks   correspond   to   the   
step   since   there   is   a   horizontal   trace   for   a   
longer   time   interval   for   each   step.   The   
histogram   bins   are   values   between   two   
numbers   having   a   difference   of   0.01.   
Therefore   our   uncertainty   for   each   measured   
step   size   represented   by   the   peak   histogram   
bin   is   .   .01V± 0    

Fig.   12:   Table   of   data   and   calculations   for   our   measured   
step   size   with   uncertainty   for   a   bin   width   of   0.01V.   
  

Input   
Voltage   

Theoretical   
Step   Size,   
n=1   (V)   

Theoretic 
al   Step   
Size,   n=2   
(V)   

Theoretical   
Step   Size,   
n=3   (V)   

-2.25V   0.110   土   
0.001   

0.220   土   
0.001   

0.330   土   
0.001   

-2.5V   0.122   土   
0.001   

0.244   土   
0.001   

0.367   土   
0.001   

-2.75V   0.135   土   
0.002   

0.270   土   
0.002   

0.405   土   
0.002   

-3.00V   0.146   土   
0.002   

0.293   土   
0.002   

0.439   土   
0.002   

-3.25V   0.159   土   
0.002   

0.318   土   
0.002   

0.476   土   
0.002   

Input   
Voltage   
(V)   

Measured   
Step   Size,   
n=1   (V)   

Measured   
Step   Size,   
n=2   (V)   

Measured   
Step   Size,   
n=3   (V)   

-2.25   0.105   土   
0.01   

0.185   土   
0.01   

0.345   土   
0.01   

-2.50   0.135   土   
0.01   

0.255   土   
0.01   

0.425   土   
0.01   

-2.75   0.125   土   
0.01   

0.240   土   
0.01   

0.345   土   
0.01   

-3.00   0.150   土   
0.01   

0.305   土   
0.01   

0.435   土   
0.01   

-3.25   0.155   土   
0.01   

0.365   土   
0.01   

0.505   土   
0.01   



Analysis   and   Discussion   
  

Our  focus  was  to  observe  evidence  of         
quantized  conductance  by  experimentally      
comparing  our  measured  step  size  for  each         
integer  value  of  conductance,  ,  to      e h  G = 2 2/   
the  theoretical  value  calculated  using  Eq.  15.         
Through  our  oscilloscope  traces,  we       
changed  the  applied  voltage  to  observe  steps         
as  the  wires  vibrated  together  in  Fig.  7  plots           
(a)-(e).  A  corresponding  histogram  of  the        
voltage  data  was  made  to  observe  peaks  for          
conductance  modes.  In  Fig.  11  we  recorded         
our  values  for  the  theoretical  step  size         
voltages  we  expected  using  our  data  and  in          
Fig.  12  are  the  measured  step  sizes  from  the           
histograms.  By  averaging  the  theoretical       
step  sizes  for  each  integer  multiple  of         
conductance  we  are  able  to  see  our  percent          
accuracy   of   our   measurement:     
        error % =  theoretical value

theoretical value  measured value∣ − ∣  
For  integer  n=1,  our  theoretical  step  size         
average  is  and  our    .134 .002Vst = 0 ± 0   
measured   step   size   is   .   .134 .01Vsm = 0 ± 0   
For  integer  n=2,  our  theoretical  step  size         
average  is  and  our    .269 .002Vst = 0 ± 0   
measured   step   size   is   .   .270 .01Vsm = 0 ± 0   
For  integer  n=3,  our  theoretical  step  size         
average  is  and  our    .403 .002Vst = 0 ± 0   
measured   step   size   is   .   .411 .01Vsm = 0 ± 0   
Using  these  values  our  percent  error,  we         
were  able  to  measure  the  step  size  for  n=1           
with  0%  error.  For  n=2  the  step  size  was           
measured  with  0.37%  error  and  for  n=3  the          
step  size  was  measured  with  1.95%  error.         
With  this,  we  see  that  we  are  able  to           
measure  the  step  size  for  smaller  integer         
multiples  of  conductance  more  accurately  as        
the   percent   error   for   n=3   is   the   largest.     

The  data  taken  for  all  input  voltages  was          
used  to  solve  for  conductance,       ,G = I

V

where  the   is  the  current  through  the  gold    I        
wire  as  a  function  of  time,   and        (t)I = R

V (t)   
is  the  voltage  into  the  gold  wire.  Here  we  V          

used  the  resistance  of  the  resistor  in  the          
amplifier  loop  of  the  circuit,   ,       9k ΩR = 9   
measured  by  the  multimeter.  We  combine        
these  relationships  to  find  the  conductance        
values  for  data  across  all  input  voltages  as          

.  In  Fig.  13,  the  (t) G =  R
V (t)

*
1

V into gold wire
     

conductance  is  compiled  into  a  histogram.        
Using  R  in  RStudio  IDE,  the  histogram  was          
made  with  bin  width  is  and  was       .32 01 * 1 5−   
plotted   with   a   fitted   curve   to   the   bin   counts.     

  
Fig.   13:   Histogram   of   conductance   data   for   all   input   
voltages   with   a   fitted   curve   to   the   bin   counts.     

  
The  histogram  data  was  then  input  to  Python          
with  the  Spyder  IDE  to  execute  a  spline  fit           
to  better  visualize  the  data  in  Fig.  14.  This           
fit  shows  the  peaks  from  the  histogram  data          
above  as  red  markers.  The  peaks  from  the          
histogram  were  then  used  to  find  the         
measured   quantum   conductance   .  G0  



  
Fig.   14:   Histogram   of   conductance   to   represent   the   peaks   
shown   with   red   markers   along   the   fit.     

  
The   histogram   in   Fig.   14   shows   the   first   
tallest   peak   conductance   value   to   be    .G0  
Following   this   we   see   smaller   peaks   for   
multiples   of   that   are   slightly   shifted   due  G0  
to   residual   resistance   in   series   with   the   gold   
wires.   We   are   able   to   compute   the   corrected   
conductance,   ,   using   this   value:  Gc  
            G R ))Gc = ( 1− − ( res + Rout

1−  
is   the   measured   conductance,  G  

,   the   output   resistance   of   the  9ΩRout = 3  
voltage   source,   and is   the   residual  Rres  
resistance   that   we   try   different   values   for.     
We   perform   a   minimum   chi   square   
estimation   of     in   Fig.   15    to   get   the  Rres  
corrected   data.   The   program   iterated   through   
values   of   .   At   each   value,   the   corrected  Rres  
quantum   conductance,   ,   were   computed.  Gc  
For   each   ,   the   possible   values   were  Gc G0  
iterated   through   and   the   chi-square   was   
computed   with   respect   to   .   Then,   the  Gc  
minimum   of   all   these   chi   square   values   is   
returned.   Of   all   the   Chi-square   minimums,   
we   select   the   smallest   chi-square   which   
corresponds   to   the   optimal   

  and   the   optimal   .   18.57 OhmsRres = 2 G0   
  

  
Fig.   15:   Chi   square   minimum   for   various   values   of    Rres  
corresponding   to   optimal   conductance.     
  

Using   the   we   found   by   minimizing   the  Rres  
chi-square,   we   plot   the   chi   square   versus   
various   possible   values   of   ,   which   are  G0  
shown   above   in   Fig.   14   between   0.000075   
and   0.000080   with   N=1000   points.   This   
graph   is   shown   below   in   Fig.   16   to   find   
where   the   quantum   conductance   has   a   chi   
square   shown   by   the   red   marker.     

  
Fig.   16:   Quantum   conductance   versus   chi   square.   

  
The   minimum   corresponds   to   the   measured   
quantum   conductance,   .  .72 0G0 = 7 * 1 5−  
Our   theoretical   value   was 

 e h .75 0 .  G = 2 2/ = 7 * 1 5−  
By   adding   the   bin   width,   ,   as  .32 01 * 1 5−  
error   on   our   peaks   in   the   histogram   Fig.   14,   
we   get   a   corresponding   value   of   

.   The   difference   between  .64 0G0 = 7 * 1 5−  



this   and   the   previous   value   
is   ,   hence   the  .72 0G0 = 7 * 1 5− .08 00 * 1 5−  

error   on   our   measured   value   making   .   
.   Thus,   the  .72 0 .08 0G0 = 7 * 1 5− ± 0 * 1 5−  

theoretical   value   agrees   with   our   results   as   it   
is   within   our   measured   value   within   
uncertainty.   
We   can   now   plot   the   spline   fit   histogram   in   
Fig.   14   with   the   corrected   conductance,   Gc

for     in   Fig.   17.  18.57ΩRres = 2  

  
Fig.   17:   Comparing   the   peaks   of   conductance   for   our   
corrected   value   with   the   integer   multiples   of   .   G0   

  

From   Fig.   17,   we   can   compare   the   peaks   of   
with   the   multiples   of   the   measured  Gc  

quantum   conductance,   .   The   peaks   of   our  G0  
corrected   conductance   are   shown   with   red   
markers   and   the   multiples,   n=1,2,3…   ,   are   
represented   by   the   vertical   red   dotted   lines.   
We   observe   that   the   first   three   integer   
multiples   match   fairly   well   to   the   corrected   
quantum   conductance.     
We   then   compute   residuals   as   the   difference   
between   the   multiples   of     and   its   closest  G0  
peak   of     in   Fig.   18.   This   signifies   how  Gc  
close   our   model   is   to   the   data.     

  
Fig   18:   Plot   of   residuals   for   the   difference   between   the   
multiples   of   and   its   closest   peak   of   .  G0 Gc  
  

For   the   integer   multiple   n=1,   we   are   
away   from   our   theoretical   value  .2 0+ 0 * 1 5−  

and   for   multiple   n=2   we   are   .6 0+ 0 * 1 5−

away   from   our   theoretical   value.   According   
to   Fig.   18,   the   last   integer   multiple   we   can   
trust   is   n=3   as   there   is   no   value   close   to   n=4   
in   Fig.   17.   This   makes   inconsistent   data   
beyond   this   point.     
  

Conclusion   
We   conclude   that   quantized   conductance   has   
a   stepping   relationship   for   two   gold   wires   
that   come   in   and   out   of   contact   with   each   
other   with   an   applied   voltage.   We   were   able   
to   calculate   the   step   sizes   of   the   voltage   with   
low   percent   error   from   making   histograms   
of   the   oscilloscope   data.   Our   measured   step   
values   were   closer   to   the   theoretical   value   
for   lower   integer   multiples   of   conductance.     
We   solved   for   the   conductance   of   all   input   
voltages   and   compiled   the   data   into   a   
histogram.   By   fitting   the   histogram   and   
marking   its   peaks,   we   were   able   to   find   the   
possible   values   for   measured   conductance.   
Using   the   measured   conductance   and   the   
output   resistance,   we   iterated   through   values   
of   residual   resistance   to   solve   for   the   
corrected   value   of   conductance.   With   a   



minimum   chi   square   fit,   we   found   the   
residual   resistance   that   corresponds   to   the   
optimal   value   of   our   measured   quantum   
conductance.   Knowing   our   possible   values   
of   our   measured   conductance   from   the   
previously   made   histogram,   we   plotted   the   
chi   square   versus   the   possible   values   to   find   
the   minimum.   We   find   the   difference   
between   the   minimum   value   of   our   
measured   conductance   and   subtract   it   with   
the   value   we   get   from   adding   error   on   our   
peaks   in   the   histogram.   This   difference   is   the   
uncertainty   of   the   minimum   chi   square   
measured   value   for   quantum   conductance.   
We   are   able   to   compare   this   value,   

,   to   our  .72 0 .08 0G0 = 7 * 1 5− ± 0 * 1 5−  
theoretical   value,   .  e h .75 0  G = 2 2/ = 7 * 1 5−  
We   conclude   that   our   measured   value   agrees   
to   the   theoretical   value   as   it   is   within   the   
uncertainty   of   our   measured   value.   Plotting   
a   spline   fit   histogram   with   the   corrected   
conductance   and   comparing   its   peaks   to   the   
conductance   multiples   of   the   measured   
conductance,   we   made   a   residual   plot   to   
show   how   close   our   fit   is   to   the   data.   The   
residual   plot   showed   our   data   for   the   first   
three   integer   multiples   of   conductance   are   
accurate   as   shown   earlier   by   the   percent   
error.     
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